Пик развития пройден: почему научно-технических прорывов пока больше нет

Тихон Сысоев

Наверно, такие суждения многим покажутся странными. Особенно сегодня, когда мы, казалось бы, наблюдаем «золотой век» в области технического, медицинского, научного и социального прогресса и до точки сингулярности вроде бы остается всего ничего.

Однако, как считают многие эксперты, наши представления о неудержимости человеческого прогресса — всего лишь декорация, изящно выстроенная медиа. По сути, все, чем мы так гордимся сегодня, — лишь доработанное и доведенное до ума наследие полувековой давности.

Открытие рентгеновского излучения и двойной структуры ДНК, пенициллина (то есть антибиотиков) и инсулина. Разработка методик экстракорпорального оплодотворения (ЭКО) и первые шаги на пути создания ИИ. А еще — транзисторы, атомная энергия, начало освоения космоса, телевидение, первые компьютеры и интернет. И это — лишь часть того, что было открыто в прошлом веке и привело к развитию промышленности и производительных сил, изменившему нашу повседневность до неузнаваемости.

И если эти и другие открытия так называемого «золотого квартала» (1940–60-е годы) сегодня были усовершенствованы и окончательно встроены в нашу жизнь, то мы сами принципиально нового в области научно-технологического кластера так и не произвели.

«Конечно, персональный компьютер и его двоюродный брат смартфон принесли за собой большие изменения: многих товаров и услуг стало больше, а их качество увеличилось. Но в сравнении с тем, что видела моя бабушка, базовые жизненные обстоятельства сегодня остались прежними», — с долей грустной иронии пишет американский экономист Тайлер Коуэн.

С чем же связана эта «технологическая стагнация»? Почему научно-технический прогресс не двигается с места уже почти полвека?

Курс на замедление

Глобальное старение населения — один из возможных ответов на вопрос. По меньшей мере, к такому выводу пришла группа российских ученых из ВШЭ, Московского института востоковедения РАН и Института социально-гуманитарного образования МПГУ.

Они опубликовали коллективную статью-исследование в журнале Technological Forecasting and Social Change, в которой не только описали один из возможных факторов, тормозящих темпы технологического роста, но и дали прогноз относительно его ближайшего будущего.

Ученые полагают, что технологическое развитие хоть и движется в тенденции с гиперболическим ускорением, но при этом довольно регулярно сменяется периодами замедления. Для примера можно разделить всю историю человечества на три сверхдлинных цикла, каждый из которых начинался и завершался технологической революцией:

  • аграрный (между 12 тыс. лет до н. э. и 3000 годом до н. э.);
  • индустриальный (с последней трети XV века по первую треть XIX);
  • кибернетический (между 1950-м и 2060–70 гг.).

В каждом из этих трех больших циклов можно наблюдать единый повторяющийся сценарий:

  1. сначала открытие и имплементация новых технологий увеличивается и ускоряется;
  2. затем, достигнув пика — точки сингулярности, — тренд замедляется.

Иными словами, привычная для нас модель линейного и стабильного прогресса, созданная мыслителями эпохи Просвещения, не работает. В логику технологического роста всегда включены как периоды ускорения, так и спада. И свидетелями периода подобного спада мы все сегодня и являемся.

По словам одного из участников исследования Алексея Коротаева, заведующего Научно-учебной лабораторией мониторинга рисков социально-политической дестабилизации НИУ ВШЭ, такая модель ускорения, сменяющегося замедлением, хорошо заметна по динамике численности населения Земли. Долгое время считалось, что демографический рост также движется с постоянным ускорением. Однако с 1970-х годов произошло изменение глобальной траектории — ускорение сменяется замедлением, и такой тренд, по прогнозам ООН, будет продолжаться.

Можно ли описать эти темпы технологического ускорения и замедления через некоторую закономерность? Авторы коллективной статьи считают, что да: корреляцию нужно усматривать в динамике численности населения.

«В нашем исследовании мы хотели показать, что тенденцию технологического развития, которую мы наблюдали в прошлом веке, нельзя напрямую переносить на современность. Ведь вместе с замедлением роста численности населения, произошло и закономерное замедление темпов технологического развития — траектория развития сменилась на другую. И, по нашим данным, точки сингулярности на нашем, кибернетическом цикле мы достигли уже в 2018 году, так что нынешнее замедление вполне закономерно», — рассказывает Алексей Коротаев.

Согласно прогнозам исследователей, эта тенденция будет сохраняться вплоть до 2030 года, когда наступит третий этап кибернетической революции — эпоха «умных» саморегулирующихся систем. А затем наступит четвертая фаза — в 2055 году, когда эти системы усовершенствуются до такой степени, что займут центральное место в новом производственном процессе.

Причем самые значимые трансформации будут происходить в области медицины, ведь к этому моменту людей преклонного возраста станет еще больше, а значит, в разы увеличится и спрос на подобные технологии.

Машина, вытесняющая ученого

Тем не менее, приведенную выше интерпретацию разделяют далеко не все специалисты. Главным образом это связано с тем, что такая модель, при всей ее ясности, «грешит» излишней математизацией, которая чрезмерно схематизируют сложную реальность. Если отойти от этой модели, поле, объясняющее торможение темпов научно-технического прогресса, становится более многомерным.

Например, Тарас Вархотов, доцент кафедры философии и методологии науки МГУ им. М.В. Ломоносова предлагает рассмотреть сразу несколько факторов, которые привели к «стагнации» научно-технологического развития.

XX век, по сути, подвел итоги развития фундаментальной науки, после чего начался переход к совершенно новой форме существования знания, от которого требуется экономическая эффективность.
Современная наука распадается на все более изолированные области знания, каждое из которых оперирует разными понятиями, закономерностями и математическими средствами.

Иными словами, некогда единое научное пространство сегодня фрагментируется, а механизмы координации между разными дисциплинами и формирования целостной «научной картины мира» слабеют. Как замечал Станислав Лем: «Очень может быть, что уже сейчас в научных книгохранилищах всех континентов находится множество сведений, которые при простом сопоставлении друг с другом компетентным специалистом дали бы начало новым ценным обобщениям. Но именно это и затормаживается ростом специализации, внутренней постоянно растущей дифференциацией наук…».

В результате человек теряет возможность получать полноценное фундаментальное научное образование — в области как гуманитарных, так и естественных наук. Последние, по словам Вархотова, «становятся все более прикладными и инженерными — и за счет этого перестают работать с общими фундаментальными закономерностями».

Экономика образования

Что такое STEM образование, и почему компании ценят таких специалистов
Современная наука стала все чаще прибегать к компьютерным вычислительным мощностям.
И хотя они и позволяют обрабатывать такие массивы данных, которые человеку не доступны, ценой этих возможностей становится постепенная передача вычислительным системам представлений о действительности — сами мы ее уже на видим. Так что чем больше мы «делегируем» машинам исследовательские задачи, тем больше мы теряем с точки зрения способности открывать что-то новое.

«Машины не обладают способностью что-либо открывать. Такая способность есть только у человека. И количество знаний совсем необязательно должно переходить в качество. Тем более, что те открытия, которыми мы так дорожим сегодня, были сделаны на существенно меньших информационных массивах. Потому что всю новизну в любую систему знания всегда приносил и будет приносить именно человек», — замечает Тарас Вархотов.

Бюрократическая полезность

Еще один фактор, который тормозит научный прогресс, — тотальная экономизация всей сферы научного знания и связанное с этим увеличение бюрократизации, которая лишает ученых свободы. За минувшее столетие произошло глубокое проникновение экономических механизмов и логики мышления на территорию знания, которое при этом исторически всегда существовало за его пределами.

Если посмотреть на то, что предшествовало, например, Первой научной революции, можно увидеть, что наука возникла из деятельности одиночек-энтузиастов, у которых не было единой системы коммуникации, и которые не составляли сообщества. Даже самой властью они рассматривались как талантливые чудаки, которые иногда могут выдать нечто ценное, но не более того.

Но через некоторое время выяснилось, что опытно-экспериментальная наука может превратиться в мощный социальный инструмент, приносящий чистую полезность. С этого момента началось превращение научного процесса в индустрию, и сама научная деятельность перестала восприниматься как нечто, связанное с творчеством. К этому добавилось и то, что наука стала массовой, а сами исследования — все более и более дорогостоящими.

Чтобы обеспечивать контроль за теми средствами, которые вкладывались в науку (общемировой рост инвестиций только за период между 2007 и 2013 годами составил 31%), государство и крупные инвесторы стали разрабатывать все более ухищренные бюрократические механизмы. Задача была сделать рентабельность и подотчетность академического мира максимально предсказуемой и прозрачной.

Для этого стали вводить всевозможные рейтинги университетов, индексы — самый известный из них индекс Хирша, — которые должны были измерять количество, качество и значимость научных публикаций. Вдобавок к этому ученые были вынуждены заполнять бесконечные анкеты, отчетности и каждый год меняющиеся заявки на получение очередного гранта.

Все это не только банально отнимает у ученого время и силы — например, американские исследователи тратят на грантовую документацию до 42% своего рабочего времени, — но часто заставляет его идти на разнообразные хитрости.

В этом смысле одна из показательных историй произошла в Южной Корее в 2006 году. Тогда ветеринар и ученый Хван У Сок, который занимался исследованием стволовых клеток, был уличен в мошенничестве и махинациях после публикации двух статей с поддельными результатами в журнале Science. На суде исследователь оправдывал свой поступок так: если бы он отчитался об отсутствии результатов, ему бы не дали новый грант, без которого он не смог бы продолжить исследования. И поэтому ученый пошел на подлог — он верил, что получит результаты, но не знал, когда именно.

Наконец, экономизация науки также привела к тому, что сами исследования утратили свою «проактивную» установку. Исторически ученые всегда действовали на грани социально дозволенного и недозволенного, сдвигая границы табу. И чтобы получить новые результаты, они почти всегда были вынуждены рисковать, в том числе человеческим здоровьем.

Однако сегодня страх, с одной стороны, ограничил деятельность самих ученых, а с другой — заставил венчурные фонды инвестировать только в проверенные проекты, которые принесут гарантированный доход.

Как замечает британский научный обозреватель Майкл Хэнлон, космическая программа «Аполлон» не была бы возможна сегодня, но не потому, что мы не хотим лететь на Луну, а потому, что уровень риска был бы неприемлемым.

В качестве примера публицист вспоминает, как швейцарский генетический инженер Инго Потрикус в 1992 году разработал сорт «золотого риса», зерна которого в концентрированном виде содержали витамин А. Это открытие могло предотвратить слепоту у огромного количества людей, но в СМИ поднялся шум относительно безопасности этого продукта, и разработку решили свернуть.

Графитовый карандаш и 3D-принтер

Но не все эксперты склонны столь пессимистично оценивать современное состояние технического развития. Например, Александр Чулок, кандидат экономических наук, директор Центра научно-технологического прогнозирования ИСИЭЗ НИУ ВШЭ, полагает, что упрощать реальность, особенно технологическую, не стоит. Возможно, торможение развития — лишь видимость, связанная со сложно устроенной экономикой и существующими бизнес-моделями.

«Полезно вспомнить, что Мартеновскую печь изобрели в 1864 году, но при этом последняя такая печь была закрыта в России в 2018 году. То есть, инновацию XIX века прекратили использовать только два года назад. И это показывает не нашу тотальную отсталость, но многоукладность экономики. Конечно, любые технологические парадигмы, описывающие логику научно-технологического развития, хороши на бумаге. Но в реальной жизни мы можем одновременно пользоваться графитовым карандашом, а вместе с этим — и 3D-принтером», — замечает Чулок.

Поэтому, полагает эксперт, современную технологическую реальность необходимо рассматривать нелинейно. Как процесс адаптации новых технологий, так и отдача вложенных в них средств, — это слишком многофакторное явление, которое не поддается простому описанию при помощи общепринятых финансовых или экономических моделей. Более того, само замедление научно-технологического развития может быть связано со скоростью проникновения инноваций, которая не является чем-то стабильным.

«На мой взгляд, главный фактор, на который нужно обращать внимание в первую очередь, — это эффекты, производимые той или иной технологией. И мне кажется, что в ближайшее десятилетие мы увидим появление новых разработок во всех сферах жизнедеятельности: от умных фруктовых садов и безлюдных нефтяных скважин до биоэлектрических интерфейсов и творчества в виртуальных вселенных. Можно их отнести к явлениям новой промышленной революции или охарактеризовать как апгрейд уже имевшихся наработок, но они точно изменят нашу жизнь. А это — самое главное», — резюмирует Чулок.

Оригинал статьи.

Новички в полях

Топ-10 самых передовых
технологий, которые сделают агропромышленный комплекс неузнаваемым

Мировое сельское хозяйство переживает ренессанс. Традиционно консервативная отрасль обратила на себя внимание инвесторов после успешно начатого технологического обновления, а также в связи с прогнозами изменения спроса на продукты питания к 2050 году, когда численность населения, как ожидается, вырастет до 9,6 млрд человек. По прогнозам специалистов, цифровизация полностью изменит облик сельскохозяйственной отрасли, объединив ее в мировой кластер. Процесс происходит буквально на наших глазах. Представляем топ-10 самых передовых технологий, которые в ближайшее десятилетие сделают агропромышленный комплекс неузнаваемым.

Технологическая революция в АПК

Последнее крупное обновление сельскохозяйственной отрасли произошло в 70–80-е годы прошлого века, когда появилась специальная сельхозтехника, новые химические удобрения и пестициды направленного действия. Конечно, эта техническая революция способствовала повышению урожайности сельхозкультур и в целом продуктивности отрасли. Но уже к 2000-м годам результатов этого технологического рывка стало явно недостаточно. Альтернативой химизации сельского хозяйства стало развитие с 2000-х годов таких направлений, как ландшафтно-адаптивная модель сельского хозяйства, биодинамическое и органическое производство сельхозпродукции, интегрированная защита от вредителей. Сегодня рынок органической сельхозпродукции растет огромными темпами в США и странах ЕС, в России и странах Восточной Азии он только начинает развиваться. Однако движение в этом направлении невозможно без применения технологий так называемого точного сельского хозяйства. Поэтому в последнее десятилетие сельхозпредприятия начали активно осваивать цифровые технологии, которые, по предварительным прогнозам, позволят накормить весь мир экологически чистой продукцией. Этот процесс уже называют новой технологической революцией.

Мы из будущего

Цифровые технологии уже активно применяются в мировом и отечественном сельском хозяйстве. Например, над российскими полями вовсю летают беспилотные летательные аппараты (БПЛА), которые изучают состояние почвы и посевов.

Какие еще технологии в ближайшее десятилетие полностью изменят наше представление о сельском хозяйстве?

Первая — использование датчиков там, где это только возможно. Агроном и животновод должны мгновенно получать исчерпывающую информацию о своих подопечных. Датчики влажности воздуха и почвы в растениеводстве, датчики температуры и движения в животноводстве позволят в режиме реального времени оценить ситуацию на полях и фермах. Телематические датчики следят за состоянием сельхозоборудования, заранее предупредят о возможной поломке. Биометрические ошейники, оснащенные системой GPS, позволят следить за поведением и перемещением животных. Датчики содержания химических веществ проконтролируют внесение удобрений и определят состояние посевов. Благодаря анализу массива информации, снимаемой с этих датчиков, фермеры смогут оптимизировать издержки, сохранять ресурсы и максимально автоматизировать процесс принятия решений.

Вторая — новые генетически модифицированные культуры. Их внедрение уже получило название «второй зеленой революции». С помощью генной инженерии удалось существенно ускорить преобразование сельскохозяйственными культурами солнечного света и углекислого газа в сахара и гидроокись углерода. С помощью этой технологии можно повышать производительность кукурузы, сои и пшеницы почти вдвое. Конечно, противники ГМО выступят против внедрения этой технологии. Однако правительства Китая и некоторых европейских стран уже ослабили требования к продуктам питания, произведенным из генетически модифицированного сырья.

Третья — синтетические продукты питания, выращенные в лабораторных условиях. «Мясо из пробирки» может заменить натуральное мясо. Синтетические продукты питания решают проблемы дальнейшего расширения пахотных земель. Технология уже заинтересовала крупнейших мировых производителей мяса.

Четвертая — робототехника. Уже сейчас сельхозпредприятия используют машины для автоматической дойки коров, дроны и специальную технику для сбора урожая. В будущем процессы вспашки полей, ухода за почвой, посадки, прополки, орошения, сбора урожая будут полностью автоматизированы. Этими технологическими операциями будут заниматься рои фермерских микророботов, способных выращивать и собирать урожай практически без вмешательства человека.

Пятая — городские фермы, позволяющие выращивать овощи и фрукты в городских условиях, в гидропонных фермах, сделанных из новых видов полимерной пленки. В США и Европе уже существует целый ряд компаний, выращивающих подобным образом некоторые виды культур: помидоры, арбузы, дыни, клубнику. Гидропонные теплицы экономят воду и обеспечивают условия для здорового выращивания растений. Организация теплиц в городских условиях позволяет существенно снизить расходы на транспортировку продукции.

Шестая — использование созданных штаммов микроорганизмов в почве. Важную роль микроорганизмов в обработке почвы фермеры поняли уже давно. С помощью технологий генной инженерии ученые уже создают различные виды микроорганизмов, которые повышают производительность культур, а также увеличивают их стойкость к засухе, болезням и вредителям. Так, уже разработан модифицированный вид бактерий, способных извлекать азот из атмосферы и доставлять его растению в виде удобрения, а некоторые хлопкоробы используют микробное покрытие на семенах хлопка, что в результате повышает урожайность культуры на 10%.

Седьмая — блокчейн. Эта технология может использоваться не только в банковском секторе, но и в сельском хозяйстве. Благодаря этой технологии можно будет получить полную информацию о производстве, транспортировке и хранении продуктов питания. Использование этой технологии снижает затраты на логистику и повышает скорость транспортировки (в том числе и трансграничной) скоропортящейся продукции.

Восьмая — РНК-интерференция. Новая технология размещения рибонуклеиновых кислот (РНК) в листьях растения позволяет подавлять экспрессию генов на определенный срок и таким образом управляет его поведением, например, программирует растение в период роста на защиту от засухи и насекомых. Выращенные таким способом продукты не являются генно-модифицированными, так как технология использует только собственные гены растения.

Девятая — применение данных со спутников. Информация из космоса позволяет получать намного больше сведений о погодных условиях и делать точный анализ состояния посевных площадей. Также она обеспечит фермерам возможность создавать карты посевных площадей без помощи картографа.

Десятая — ферма в стиле Uber. Эта технология даст каждому покупателю приобрести экологически чистые овощи и фрукты по себестоимости напрямую от производителя через интернет-портал, без помощи и наценки посредников в виде супермаркетов. Потенциальный покупатель рассчитывает свою потребность в продуктах сельского хозяйства на год через онлайн-калькулятор, заказывает продукты, и онлайн-ферма находит ближайшего к нему фермера, который выращивает урожай под заказ. Покупатель через систему сможет следить за тем, как созревает и хранится урожай.

Новое сельское хозяйство

По мнению экспертов, использование цифровых технологий в сельском хозяйстве не только переведет мировой АПК на качественно новый уровень, но и неизбежно приведет к созданию глобальной агропромышленной отрасли. Это даст множество преимуществ как участникам отрасли, так и покупателям продукции. Вся система будет построена так, чтобы постоянно развиваться, новые материалы, новинки интернета вещей, нанотехнологии будут мгновенно внедряться в сельскохозяйственную практику. Сейчас новое сельское хозяйство начинает свой путь цифровизации. По данным ILOSTAT, в мировом АПК сегодня занято более 28% мировых трудовых ресурсов. Лидерами технологической революции в мировом АПК являются США и Китай. Россия и страны Восточной Азии находятся в начале пути, но уже активно включаются в процесс.

Автор текста: Ирина Шкарникова

Оригинал статьи: http://agrodigital.rbc.ru/article/4